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Abstract In this paper, a study for positive position
feedback controller is presented that is used to sup-
press the vibration amplitude of a nonlinear dynamic
model at primary resonance and the presence of 1:1 in-
ternal resonance. We obtained an approximate solution
by applying the multiple scales method. Then we con-
ducted bifurcation analyses for open and closed loop
systems. The stability of the system is investigated
by applying the frequency-response equations. The ef-
fects of the different controller parameters on the be-
havior of the main system have been studied. Opti-
mum working conditions of the system were extracted
to be used in the design of such systems. Finally, nu-
merical simulations are performed to demonstrate and
validate the control law. We found that all predic-
tions from analytical solutions are in good agreement
with the numerical simulation. A comparison with the
available published work is included at the end of the
work.
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u, u̇, ü Displacement, velocity and acceleration of
main system, respectively

v, v̇, v̈ Displacement, velocity and acceleration of
controller, respectively

μ1,μ2 Linear damping parameters of main system
and controller, respectively

ω1,ω2 Linear natural frequencies of main system
and controller, respectively

α1, α2 Cubic nonlinearity parameters of main
system and controller, respectively

δ Main system nonlinear parameter
f External excitation force amplitude
Ω External excitation frequency
Fc Control signal
Ff Feedback signal
γ Control signal gain
λ Feedback signal gain
ε Small perturbation parameter

1 Introduction

Vibration, occurring in most machines, vehicles, struc-
tures, building and dynamic systems is undesirable,
not only because of the resulting unpleasant motions,
the dynamic stresses which may lead to fatigue and
failure of the structure or machine, the energy losses
and reduction in performance which accompany vibra-
tions, but also because of the produced noise. Noise
is an undesired phenomenon, and since sound is pro-
duced by some source of motion or vibration causing
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pressure changes which propagate through the air or
other transmitting medium, vibration control is of vital
importance to sound attenuation. Vibration analysis of
machines and structures is often a necessary prereq-
uisite for controlling vibration and noise. The theory
and techniques of vibration suppression have been ex-
tensively studied for many years. Various types of con-
troller are developed so as to channel the excess energy
from excitation to the slave system in order that vibra-
tion in the primary system can be suppressed. The pos-
itive position feedback (PPF) controller used exten-
sively for vibration reduction for many linear and non-
linear dynamical systems, which show their feasibility
and efficiency in practice. Warminski et al. [1] stud-
ied active suppression of nonlinear composite beam
vibrations by selected control algorithms. Shan et al.
[2] studied slewing and vibration control of a single-
link flexible manipulator by positive position feed-
back controller. Wang et al. [3] presented theoretical
and experimental study of active vibration control of a
flexible cantilever beam using piezoelectric actuators.
Creasy et al. [4] discussed adaptive positive position
feedback controller for actively absorbing energy in
acoustic cavities. Ahamed et al. [5] presented dynamic
compensation for control of a rotary wing unmanned
aerial vehicle (UAV) using positive position feedback
controller. Baz et al. [6] studied optimal vibration con-
trol with modal positive position feedback controller.
Baz et al. [7] presented a study for daptive control of
flexible structures using modal positive position feed-
back controller. In Refs. [8–10] the authors presented a
study for single mode control of a cantilever beam un-
der primary and principal parametric excitation. Non-
linear vibrations of primary and parametrically excited
cantilever beams subjected to nonlinear delayed feed-
back control are investigated in Refs. [11, 12]. Eissa
et al. [13–21] studied the vibration reduction for vari-
ous systems using different passive and active control
techniques.

In this paper, we applied positive position feed-
back active controller to suppress the vibration of a
nonlinear system when subjected to external primary
resonance excitation. The multiple scale perturbation
method is applied to obtain a first-order approximate
solution. The equilibrium curves for various controller
parameters are plotted. The stability of the steady
state solution is investigated using frequency-response
equations. The approximate solution was numerically
verified. We found that all predictions from analytical

solutions are in good agreement with the numerical
simulation. Finally, a comparison with the available
published work is included by the end of the work.

2 System model

The nonlinear ordinary differential equation that de-
scribes the dynamical behavior of the considered sys-
tem is given in Ref. [1] as

ü + 2μ1ω1u̇ + ω2
1u + α1u

3 − δ
(
uu̇2 + u2ü

)

= f cos(Ωt) + γFc(t) (1)

We introduce a second order nonlinear controller,
which is coupled to the main system through a con-
trol law. Then, the equation governing the dynamics
of the controller (PPF) is suggested as

v̈ + 2μ2ω2v̇ + ω2
2v + α2v

3 = λFf (t) (2)

We choose the control signal Fc = v, and the feedback
signal Ff = u, so the closed loop system equations are

ü + 2μ1ω1u̇ + ω2
1u + α1u

3 − δ
(
uu̇2 + u2ü

)

= f cos(Ωt) + γ v (3)

v̈ + 2μ2ω2v̇ + ω2
2v + α2v

3 = λu (4)

3 Perturbation analysis

Applying the multiple scales method [22], we obtain
first-order approximate solutions for (3) and (4) by
seeking the solutions in the forms

u(T0, T1, ε) = εu1(T0, T1) + ε2u2(T0, T1) (5)

v(T0, T1, ε) = εv1(T0, T1) + ε2v2(T0, T1) (6)

where ε is a small dimensionless book-keeping pertur-
bation parameter and 0 < ε � 1, T0 = t and T1 = εt

are the fast and slow time scales, respectively. In terms
of T0 and T1, the time derivatives are transformed into

d

dt
= D0 + εD1,

d2

dt2
= D2

0 + 2εD0D1

where Dj = ∂

∂Tj

, j = 0,1 (7)

To make damping, nonlinearities, primary resonance
excitation force, feedback gain and control signal gain
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appear in the same perturbation equations, we scale
the equations parameters as

μn = εμ̂n, αn = ε−1α̂n, δ = ε−1δ̂,

λ = ελ̂, γ = εγ̂ and f = ε2f̂ , n = 1,2 (8)

Substituting (5) to (8) into (3) and (4), and equating
coefficients of like powers of ε, we obtain the follow-
ing set of ordinary differential equations:
O(ε):

(
D2

0 + ω2
1

)
u1 = 0 (9)

(
D2

0 + ω2
2

)
v1 = 0 (10)

O(ε2):

(
D2

0 + ω2
1

)
u2 = −α̂1u

3
1 + γ̂ v1 − 2μ̂1ω1D0u1

− 2D1D0u1 + δ̂u2
1D

2
0u1

+ δ̂u1(D0u1)
2

+ f̂

2

(
eiΩT0 + e−iΩT0

)
(11)

(
D2

0 + ω2
2

)
v2 = λ̂u1 − α̂2v

3
1 − 2D1D0v1

− 2μ̂2ω2D0v1 (12)

The general solution of (9) and (10) can be expressed
in the forms:

u1(T0, T1) = A(T1)e
iω1T0 + cc (13)

v1(T0, T1) = B(T1)e
iω2T0 + cc (14)

where cc stands for the complex conjugate of the pre-
ceding terms. The quantities A(T1) and B(T1) are un-
known function in T1 at this stage of the analysis.
They will be determined by eliminating the secular
and small-divisor terms at the next approximation or-
der.

Substituting (13) and (14) into (11) and (12), we get

(
D2

0 + ω2
1

)
u2 = γ̂ Beiω2T0 − [

α̂1A
3 + 2δ̂ω2

1A
3]e3iω1T0

+ [−3α̂1A
2A − 2δ̂ω2

1A
2A

− 2iμ̂1ω
2
1A − 2iω1D1A

]
eiω1T0

+ f̂

2
eiΩT0 + cc (15)

(
D2

0 + ω2
2

)
v2 = λ̂Aeiω1T0 − α̂2B

3e3iω2T0

+ [−2iω2D1B − 3α̂2B
2B

− 2iμ̂2ω
2
2B

]
eiω2T0 + cc (16)

where the over bar denotes the complex conjugate
functions. The particular solutions of (15) and (16)
take the forms

u2 = θ1e
iω2T0 + θ2e

3iω1T0 + θ3e
iΩT0 + cc (17)

v2 = θ4e
iω1T0 + θ5e

3iω2T0 + cc (18)

where

θ1 = γ̂ B

ω2
1 − ω2

2

, θ2 = α̂1A
3 + 2δ̂ω2

1A
3

8ω2
1

,

θ3 = f̂

2(ω2
1 − Ω2)

, θ4 = λ̂A

ω2
2 − ω2

1

, and

θ5 = α̂2B
3

8ω2
2

.

The deduced resonance conditions in this approxima-
tion order are:

(i) Primary resonance: Ω = ω1

(ii) Internal resonance: ω1 = ω2

(iii) Simultaneous resonance: Ω = ω1 and ω1 = ω2

In this work, the case of the simultaneous res-
onances (Ω = ω1,ω1 = ω2) is considered. So, the
closeness of the simultaneous resonances can be de-
scribed quantitatively by introducing the detuning pa-
rameters σ1 and σ2 according to:

Ω = ω1 + σ1 = ω1 + εσ̂1,
(19)

ω2 = ω1 + σ2 = ω1 + εσ̂2

Inserting (19) into the secular and small-divisor terms
in (15) and (16), one finds the solvability conditions:

[−3α̂1A
2A − 2δ̂ω2

1A
2A − 2iμ̂1ω

2
1A − 2iω1D1A

]

× eiω1T0 + γ̂ Beiσ̂2T1eiω1T0

+ f̂

2
eiσ̂1T1eiω1T0 = 0 (20)

[−2iω2D1B − 3α̂2B
2B − 2iμ̂2ω

2
2B

]
eiω2T0

+ λ̂Ae−iσ̂2T1eiω2T0 = 0 (21)
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Dividing (20) by eiω1T0 and (21) by eiω2T0 , we get

−3α̂1A
2A − 2δ̂ω2

1A
2A − 2iμ̂1ω

2
1A − 2iω1D1A

+ γ̂ Beiσ̂2T1 + f̂

2
eiσ̂1T1 = 0 (22)

−2iω2D1B − 3α̂2B
2B − 2iμ̂2ω

2
2B + λ̂Ae−iσ̂2T1

= 0 (23)

To analyze the solution of (22) and (23), we put

A(T1) = (â1/2)eiβ1

⇒ D1A(T1) = (
â′

1/2
)
eiβ1 + i

(
â1β

′
1/2

)
eiβ1,

a1 = εâ1 (24)

B(T1) = (â2/2)eiβ2

⇒ D1B(T1) = (
â′

2/2
)
eiβ2 + i

(
â2β

′
2/2

)
eiβ2,

a2 = εâ2 (25)

where ()′ = D1(), a1 and a2 are the steady-state am-
plitudes of the main system and controller, respec-
tively, and β1, β2 are the phases of the motion. Insert-
ing (24) and (25) into (22) and (23), we get the follow-
ing amplitude-phase modulating equations:

ȧ1 = −(μ1ω1)a1 +
(

γ

2ω1

)
a2 sin(ϕ2)

+
(

f

2ω1

)
sin(ϕ1) (26)

a1β̇1 =
(

3α1

8ω1

)
a3

1 +
(

δω1

4

)
a3

1 −
(

γ

2ω1

)
a2 cos(ϕ2)

−
(

f

2ω1

)
cos(ϕ1) (27)

ȧ2 = −(μ2ω2)a2 −
(

λ

2ω2

)
a1 sin(ϕ2) (28)

a2β̇2 =
(

3α2

8ω2

)
a3

2 −
(

λ

2ω2

)
a1 cos(ϕ2) (29)

where

()̇ = d()/dt, ϕ1 = σ̂1T1 − β1 = σ1t − β1,

(30)
ϕ2 = σ̂2T1 + β2 − β1 = σ2t + β2 − β1

To eliminate β̇1 and β̇2 from equations (27) and (29),
by differentiating (30) with respect to t , we have

β̇1 = σ1 − ϕ̇1, β̇2 = (ϕ̇2 − ϕ̇1 + σ1 − σ2) (31)

Substituting (31) into (27) and (29), we obtain

ϕ̇1 = σ1 − 3

8ω1
α1a

2
1 − 1

4
δω1a

2
1 + 1

2a1ω1
γ a2 cos(ϕ2)

+ 1

2a1ω1
f cos(ϕ1) (32)

ϕ̇2 = σ2 −
[

1

4
δω1 + 3

8ω1
α1

]
a2

1 + 3

8ω2
α2a

2
2

+
[

1

2a1ω1
γ a2 − 1

2ω2a2
λa1

]
cos(ϕ2)

+ 1

2a1ω1
f cos(ϕ1) (33)

From (26), (28), (32), and (33), the autonomous
amplitude-phase modulating equations are

ȧ1 = −μ1ω1a1 + 1

2ω1
γ a2 sin(ϕ2)

+ 1

2ω1
f sin(ϕ1) (34a)

ϕ̇1 = σ1 − 3

8ω1
α1a

2
1 − 1

4
δω1a

2
1 + 1

2a1ω1
γ a2 cos(ϕ2)

+ 1

2a1ω1
f cos(ϕ1) (34b)

ȧ2 = −μ2ω2a2 − 1

2ω2
λa1 sin(ϕ2) (34c)

ϕ̇2 = σ2 −
[

1

4
δω1 + 3

8ω1
α1

]
a2

1 + 3

8ω2
α2a

2
2

+
[

1

2a1ω1
γ a2 − 1

2ω2a2
λa1

]
cos(ϕ2)

+ 1

2a1ω1
f cos(ϕ1) (34d)

The performance of the control law will be evalu-
ated by calculating the equilibrium solutions of (34a)–
(34d), and examining their stability as a function in the
parameters σ1, σ2,μ2, α2,ω2, γ, λ, and f .

4 Equilibrium solution

At steady-state motion we have

ȧ1 = ȧ2 = ϕ̇1 = ϕ̇2 = 0 (35)
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This corresponds to the equilibrium points of (34a)–
(34d). Substituting (35) into (31), we get

β̇1 = σ1, β̇2 = σ1 − σ2 (36)

Substituting (35) and (36) into (26) to (29), we get

μ1ω1a1 = 1

2ω1
γ a2 sin(ϕ2) + 1

2ω1
f sin(ϕ1) (37)

σ1 = 3

8ω1
α1a

2
1 + 1

4
δω1a

2
1 − 1

2a1ω1
γ a2 cos(ϕ2)

− 1

2a1ω1
f cos(ϕ1) (38)

μ2ω
2
2a2 = −1

2
λa1 sin(ϕ2) (39)

ω2(σ1 − σ2)a2 − 3

8
α2a

3
2 = −1

2
λa1 cos(ϕ2) (40)

Squaring and adding (39) and (40), we get

μ2
2ω

4
2a

2
2 +

[
ω2(σ1 − σ2)a2 − 3

8
α2a

3
2

]2

= 1

4
λ2a2

1 (41)

From (39) and (40), we have

sin(ϕ2) = −2μ2ω
2
2a2

λa1
(42)

cos(ϕ2) = − 1

λa1

(
2ω2(σ1 − σ2)a2 − 3

4
α2a

3
2

)
(43)

Inserting (42) and (43) into (37) and (38), we get

μ1ω1a1 + 1

ω1λa1
γμ2ω

2
2a

2
2 = 1

2ω1
f sin(ϕ1) (44)

3

8ω1
α1a

3
1 + 1

4
δω1a

3
1 + γ

λω1a1

×
(

ω2(σ1 − σ2)a
2
2 − 3

8
α2a

4
2

)

− σ1a1 = 1

2ω1
f cos(ϕ1) (45)

Squaring and adding equations (44) and (45), we get
[

3

8ω1
α1a

3
1 + 1

4
δω1a

3
1

+ γ

λω1a1

(
ω2(σ1 − σ2)a

2
2 − 3

8
α2a

4
2

)
− σ1a1

]2

+
[
μ1ω1a1 + 1

ω1λa1
γμ2ω

2
2a

2
2

]2

= 1

4ω2
1

f 2 (46)

Equations (41) and (46) are the frequency-response
equations that used to describes the system steady-
state solutions behavior for the practical case i.e. (a1 �=
0, a2 �= 0).

5 Stability analysis

The stability of the equilibrium solution was deter-
mined by examining the eigenvalues of the Jacobian
matrix of the right-hand side of (34a)–(34d). If the real
part of each eigenvalue is negative, the correspond-
ing equilibrium solution is asymptotically stable. If
the real part of any eigenvalues is positive, the cor-
responding equilibrium solution is unstable. To derive
the stability criteria, we need to examine the behav-
ior of small deviations from the steady-state solutions
a10, a20, ϕ10, and ϕ20. Thus, we assume that

a1 = a11 + a10, a2 = a21 + a20,

ϕ1 = ϕ11 + ϕ10, ϕ2 = ϕ21 + ϕ20

ȧ1 = ȧ11, ȧ2 = ȧ21, ϕ̇1 = ϕ̇11,

ϕ̇2 = ϕ̇21

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(47)

where a10, a20, ϕ10 and ϕ20 satisfy (41) and (46) and
a11, a21, ϕ11, ϕ21 are perturbations which are assumed
to be small compared to a10, a20, ϕ10 and ϕ20. Sub-
stituting (47) into (34a)–(34d), expanding for small
a11, a21, ϕ11 and ϕ21, and keeping linear terms in
a11, a21, ϕ11 and ϕ21, we get

ȧ11 = r11a11 + r12ϕ11 + r13a21 + r14ϕ21 (48)

ϕ̇11 = r21a11 + r22ϕ11 + r23a21 + r24ϕ21 (49)

ȧ21 = r31a11 + r32ϕ11 + r33a21 + r34ϕ21 (50)

ϕ̇21 = r41a11 + r42ϕ11 + r43a21 + r44ϕ21 (51)

where rij , i = 1,2,3,4 and j = 1,2,3,4 are given in
the Appendix.

Equations (48) to (51) can be represented in the fol-
lowing matrix form:

[
ȧ11 ϕ̇11 ȧ21 ϕ̇21

]T

= [J ] [a11 ϕ11 a21 ϕ21
]T

(52)
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where

[J ] =

⎡

⎢⎢
⎣

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

⎤

⎥⎥
⎦ ,

is the Jacobian matrix.
Thus, the stability of the steady-state solutions de-

pends on the eigenvalues of the Jacobian matrix. One
can obtain the following eigenvalue equation:
∣∣∣∣
∣∣∣∣

r11 − λ r12 r13 r14

r21 r22 − λ r23 r24

r31 r32 r33 − λ r34

r41 r42 r43 r44 − λ

∣∣∣∣
∣∣∣∣

= 0 (53)

Expanding this determinant, yields

λ4 + η1λ
3 + η2λ

2 + η3λ + η4 = 0 (54)

where λ denotes eigenvalues of the matrix [J ], and
η1, η2, η3 and η4 are coefficients of (54). Routh–
Hurwitz criterion is used to establish the stability of
the equilibrium solutions. Accordingly, the necessary
and sufficient conditions for stable system are:

η1 > 0, η1η2 − η3 > 0,

(55)
η3(η1η2 − η3) − η2

1η4 > 0, η4 > 0.

6 Results and discussions

In this section, the steady-state response of the main
system and the controller are investigated extensively
for the different controller parameters under primary
resonance excitation at the presence of 1:1 internal res-
onance. Results are presented in graphical forms as
steady-state amplitudes versus the detuning parame-
ters and the excitation force f for both the main sys-
tem and the controller. Figures 1 to 14 are plotted
by adopting the following values of the system pa-
rameters μ1 = 0.01,μ2 = 0.001,ω1 = ω2 = 3.0, α1 =
14.5, α2 = 0.0, δ = 1.0, λ = 2.0, γ = 2.0, σ2 = 0.0,
and f = 0.05, unless otherwise specified. Solid lines
correspond to stable solutions, while dashed ones cor-
respond to unstable solutions.

Figure 1 shows the frequency-response curves for
the open loop case (controller not in action) for vari-
ous levels of the excitation amplitude f . The ampli-
tude of the response depends on the detuning param-
eter σ1 and the amplitude of excitation f . It is clear

Fig. 1 Uncontrolled system frequency-response curves

from Fig. 1 that, when the amplitude of excitation f is
increased, the frequency response curves of the main
system is bent to the right that leading to the hardening
effect and jump phenomenon occurrence. As the forc-
ing amplitude increases, the nonlinearity will domi-
nate the main system response.

Figure 2 shows the controlled system frequency-
response curves, where Fig. 2a shows the main system
frequency-response curves and Fig. 2b shows the con-
troller frequency-response curves. It is clear that the
minimum steady-state amplitude of the main system
a1 occurs when σ1 = 0.0 which confirms that the con-
troller is able to suppress the primary resonance vibra-
tion effectively. Also, the jumping phenomena associ-
ated with each mode are indicated by arrows, where,
as σ1 is increased gradually from a negative value, we
have small amplitudes nonlinear periodic solutions for
a1 and a2 until they reach the point A. Then they in-
creased at a remarkable rate until reach the point B, at
this point B, we have a saddle-node bifurcation. Sub-
sequent to this bifurcation, there is a jump from large-
to small amplitudes i.e. (jump from B to C). Then they
move along D–I until reach the point E, at this point E,
we have another saddle-node bifurcation. Subsequent
to this bifurcation, there is a jump from large- to small
amplitudes i.e. (jump from E to F). Then they move
with small amplitudes nonlinear periodic solutions. As
σ1 is decreased gradually from a large positive value,
we have small amplitudes nonlinear periodic solutions
for a1 and a2 until they reach the point G. Then they
are increased at a remarkable rate until they reach the
point H, at this point H, we have a saddle-node bifur-
cation. Subsequent to this bifurcation, there is a jump
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Fig. 2 Frequency-response
curves of: (a) the main
system and (b) the
controller

from small to large amplitudes i.e. (jump from H to I).
Then they move along D–C until they reach the point
J, at this point J, we have another saddle-node bifur-
cation. Subsequent to this bifurcation, there is a jump
from small to large amplitudes i.e. (jump from J to K).

The influence of the control signal gain γ on the
frequency-response curves of both the main system
and the controller is presented in Figs. 3a and 3b, re-
spectively. Figure 3a shows that, for large values of
γ , the vibration reduction frequency bandwidth of the
controller is wider, and Fig. 3b shows that, for large
values of γ , the controller amplitude decreases.

The effects of the feedback signal gain λ on the
frequency-response curves of the main system and the
controller is presented in Figs. 4a and 4b, respectively.
Here Fig. 4a shows that, as the feedback signal gain
λ increases, the vibration reduction frequency band-
width of the controller is wider, and Fig. 4b shows that,
for large values of λ, the controller peak amplitudes
increases.

Based on Fig. 5, for a negative or positive values
of the controller’s cubic nonlinear parameter α2, the
frequency-response curve is either bent to the right
(hard spring) or to the left (soft spring), respectively.
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Fig. 3 Effect of varying the control signal gain γ on the frequency-response curves of: (a) the main system, and (b) the controller

Fig. 4 Effect of varying the feedback signal gain λ on the frequency-response curves of: (a) the main system, and (b) the controller

Figure 6 shows the effect of the controller’s damp-
ing coefficient μ2 values on both the main system and
the controller frequency-response curves. It is noted
that the existence of multiple solution and bifurcation
points depends on the damping coefficient value. Here,
for small values of damping coefficient μ2, the jump-
ing phenomenon occurs. For large values of damp-
ing coefficient μ2, both the main system and the con-
troller exhibits linear responses and the jumping phe-
nomenon disappears. It is noted that, as μ2 increases,
the controller’s efficiency to eliminate the primary res-
onance excitations slightly decreases, but the main
system and the controller peak amplitudes decreases.

Figure 7 shows the frequency response-curves of
both the main system and the controller for three dif-
ferent values of the internal detuning parameter σ2.
Here, Fig. 7a shows that for σ2 = −0.2 the mini-
mum main system steady-state amplitude occurs when
σ1 = −0.2, for σ2 = 0.0 the minimum main system
steady-state amplitude occurs when σ1 = 0.0, and for
σ2 = 0.2 the minimum main system steady-state am-
plitude occurs when σ1 = 0.2. Based on Fig. 7a the
minimum main system steady-state amplitude occurs
when σ1 = σ2 i.e. (ω2 = Ω from (19)). This means
that it is necessary to tune the controller’s natural fre-
quency ω2 to the same value of the excitation fre-
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Fig. 5 Effect of varying the nonlinear parameter α2 on the frequency-response curves of: (a) the main system, and (b) the controller

Fig. 6 Effect of varying the controller damping coefficient μ2 on the frequency-response curves of: (a) the main system, and (b) the
controller

quency Ω rather than the main system’s natural fre-
quency ω1. So, for the dynamical systems subject to
a variable external excitation frequency Ω , we can
measure the variation in the excitation frequency Ω

then, the controller natural frequency ω2 is modified
adaptively to the same new value of the excitation fre-
quency. All these results were verified numerically in
Sect. 7.

Based on the linear control theory, the dynamical
systems static gains are inversely proportional to the
square of the natural frequency. So, the small natural
frequency systems have a large static gain, which is an
undesirable phenomenon in vibration control theory.

Figure 8 shows the effects of decreasing the natural
frequency of both the main system and the controller
on their frequency-response curves for internal detun-
ing parameter σ2 = 0 i.e. (ω1 = ω2). The figure shows
that, as ω1 and ω2 decrease, the peak amplitudes
of both the main system and the controller increase,
and the vibration reduction controller frequency band-
width increases. So this type of controllers (PPF) is
very suitable for small natural frequency dynamical
systems that subjected to primary resonance excita-
tions.

Figure 9 shows the frequency-response curves of
the closed-loop case for various levels of the excita-
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Fig. 7 Effect of varying the internal detuning parameter σ2 on the frequency-response curves of: (a) the main system, and (b) the
controller

Fig. 8 Effect of varying the natural frequency for σ2 = 0 (i.e. ω1 = ω2) on the frequency-response curves of: (a) the main system, and
(b) the controller

tion amplitude f . It is clear that, as the excitation am-
plitude increases, the frequency-response curves bend
away from the linear curves, resulting in multivalued
regions and jump phenomenon. The figure shows that
the minimum steady-state amplitude of the main sys-
tem occurs for the detuning parameters σ1 = σ2 = 0.

In Fig. 10, we show typical force-response curves
of both the main system and the controller for four dif-
ferent values of the external detuning parameter σ1 at
the presence of 1:1 internal resonance (i.e. σ2 = 0.0).
We can trace the histories of a1 and a2 as the excita-

tion amplitude f slowly increased from zero. Initially
both a1 and a2 are zeros, and they follow the curve ac-
cording to the external detuning parameter σ1 values.
For σ1 = 0, the main system steady-state amplitude a1

increases slightly, while the controller steady-state am-
plitude a2 increases rapidly in a linear form as the ex-
citation amplitude f increases. For σ1 �= σ2, the main
system steady-state amplitude a1 increases rapidly as
with the controller steady-state amplitude a2; and we
can note possible jump phenomena and unstable be-
haviors occurrence. This confirms the failure of the
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Fig. 9 Effect of varying the excitation force f on the frequency-response curves of: (a) the main system, and (b) the controller

Fig. 10 Force-amplitude response curves when σ2 = 0 of: (a) the main system, and (b) the controller

PPF controller to suppress the primary resonance vi-
brations for small external detuning, if it retains the
status of the internal resonance.

The variations of σ2 versus a1 and a2 are plotted
in Fig. 11 in the case of primary resonance excita-
tions (i.e. σ1 = 0.0). Based on Fig. 11, the main sys-
tem exhibits minimum stable steady-state amplitude
when σ2 = 0.0. For σ2 ≤ −3 this means that ω2 ≤ 0,
which cannot occur from the engineering point of
view, the frequency-response curves for both the main
system and controller exhibit unstable response. The
figure shows also for mistuning between ω1 and ω2 it

is preferable for the system that ω2 must be smaller
than ω1.

7 Numerical simulations

To validate the results of multiple scales perturbation
analysis, the analytical results were verified by inte-
gration of the original equations (3) and (4) numeri-
cally, and the numerical results for steady-state solu-
tions are marked as small circles on Figs. 12, 13, 14,
15. In Fig. 12, a1 and a2 are plotted versus σ1 for
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Fig. 11 Effect of varying the internal detuning parameter σ2 on the frequency-response curves of: (a) the main system, and (b) the
controller

Fig. 12 The frequency-response curves for μ2 = 0.001 of: (a) the main system and (b) the controller

μ2 = 0.001. In this case jump phenomena were re-
ported for a1 and a2. In Fig. 13, a1 and a2 are plot-
ted versus σ1 for μ2 = 0.01, in this case no jump phe-
nomenon was observed. In Fig. 14, a1 and a2 are plot-
ted as a functions in f for σ1 = σ2 = 0. In Fig. 15, a1

and a2 are plotted as a function of f for σ1 = 0.25 and
σ2 = 0.0. Based on Figs. 12, 13, 14, 15 the analyses
show that all predictions from the analytical solutions
are in good agreement with the numerical simulation.

Figures 16 and 17 show the time responses for zero
initial conditions of the main system for the open and

the closed loop cases, respectively, for the system pa-
rameters mentioned in Sect. 6. It can be seen from
the figures that the main system’s steady-state ampli-
tude in the control case was reduced by about 98.5 %
from its value without control. This means that the
effectiveness of the PPF controller Ea is about 625
(Ea = steady-state amplitude of the main system with-
out controller/steady-state amplitude of the main sys-
tem with controller).

Based on Fig. 7, Figs. 18, 19, 20, 21, 22 show the
time responses for zero initial conditions of the main
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Fig. 13 The frequency-response curves for μ2 = 0.01 of: (a) the main system, and (b) the controller

Fig. 14 Force-amplitude response curves for σ1 = σ2 i.e. (Ω = ω2) of: (a) the main system and (b) the controller

system and the controller for different values of the
detuning parameters σ1, σ2, and the excitation force f .

Figures 18 and 19 show the main system and the
controller time response for f = 0.05 and f = 3.0,
respectively, where σ1 = σ2 = 0.0. The figures show
that the main system steady-state amplitudes reached
to a very small value. Figures 19 shows that the main
system time response may take more time until it
reaches the steady-state because of the high excitation
force.

Figures 20 and 21 show the main system and the
controller time response for σ1 = σ2 = 0.25 and σ1 =
σ2 = 0.5, respectively, where f = 0.5. The figures
show that the main system steady-state amplitudes
reached to a very small value. Figure 21 shows that
the main system may take more time until it reaches
the steady-state because of the large detuning values.

Figure 22 shows the main system and the controller
time response for f = 0.5, σ1 = 0.25 and σ2 = 0.0.
The figure shows that the main system steady-state
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Fig. 15 Force-amplitude response curves for σ1 = 0.25, σ2 = 0 of: (a) the main system, and (b) the controller

Fig. 16 The main system
time response of the open
loop case for
Ω = ω1 = 3.0, σ1 = 0 and
f = 0.05

Fig. 17 The main system
time response of the closed
loop case for
ω1 = ω2 = Ω = 3.0, σ1,2 = 0
and f = 0.05
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Fig. 18 Time responses for σ1 = σ2 = 0.0,ω1 = 3.0, f = 0.05 of: (a) the main system, (b) the controller

Fig. 19 Time responses for σ1 = σ2 = 0.0,ω1 = 3.0, f = 3.0 of: (a) the main system, and (b) the controller

Fig. 20 Time responses for σ1 = σ2 = 0.25,ω1 = 3.0, f = 0.5 of: (a) the main system, and (b) the controller

amplitudes reached a large significantly value because
of σ1 �= σ2.

Based on Figs. 18, 19, 20, 21, 22 the controller op-
erates effectively to eliminate the main system vibra-
tion amplitude when σ1 = σ2 i.e. (Ω = ω2). Under this
condition, all excess energy in the excited system is
channeled to the controller.

According to the unstable points P1 and P2 that are
marked on Fig. 10, the main system and the controller
time response were examined. As shown in Figs. 23a,
23b (according to the point P1) and Figs. 24a, 24b (ac-
cording to the point P2), the main system and the con-
troller time response exhibit unstable motions. So, we
construct Poincaré maps for each response to deter-
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Fig. 21 Time responses for σ1 = σ2 == 0.5,ω1 = 3.0, f = 0.5 of: (a) the main system, and (b) the controller

Fig. 22 Time responses for σ1 = 0.25, σ2 = 0.0,ω1 = 3.0, f = 0.5 of: (a) the main system, and (b) the controller

mine the nature of these motions as shown in Figs. 23c,
23d (according to the point P1) and Figs. 24c, 24d (ac-
cording to the point P2), which shows a quasi-periodic
motion for both the main system and the controller.

8 Comparison between time response solutions of
the perturbation and the numerical methods

The set of (34a)–(34d) describes modulation of the
amplitudes a1, a2 and the modified phases ϕ1, ϕ2 for
the tested case of two resonances occurring simultane-
ously (Ω = ω1,ω1 = ω2). The numerical solutions of
(34a)–(34d) for chosen values of the system parame-
ters are presented graphically in Figs. 25 and 26. The
dashed lines show the modulation of the amplitudes
for the generalized coordinates u and v. However, the
continuous lines represent the time history of vibra-
tions which were obtained numerically as solutions of
the original equations (3) and (4). The solutions pre-
sented in the graphs were obtained by adopting the

same values of the system parameters as mentioned
in Sect. 6, except the excitation amplitude f and the
external detuning parameter σ1. Here, for Fig. 25 f =
3.0 and σ1 = 0.0, and for Fig. 26 f = 0.5 and σ1 =
0.25. The simulation results show that (34a)–(34d) de-
scribe with great precision not only the steady-state
modulating amplitudes but also the transient modulat-
ing amplitudes of the original equations solutions.

9 Conclusions

The positive position feedback (PPF) controller has
been studied for the primary resonance of a nonlinear
system in the presence of 1:1 internal resonance. The
method of multiple scales is used to derive four first
order differential equations governing the time evolu-
tion of the amplitudes and phases of both the main sys-
tem and the controller. Then, the bifurcation analysis
is conducted to examine the stability of the closed loop
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Fig. 23 (a, b) Time responses of the main system and the controller, respectively; (c, d) Poincaré maps of the main system and the
controller, respectively; for σ1 = 0.25, σ2 = 0.0,ω1 = 3.0, f = 1.0

case and to investigate the performance of the control
law. The analysis revealed that:

1 Once the controller natural frequency is properly
tuned to the excitation frequency (Ω = ω2), the PPF
controller is very effective in reducing the high am-
plitude vibration of the nonlinear systems.

2 This type of controller (PPF) is very suitable for vi-
bration reduction of small natural frequencies dy-
namical systems.

3 The effective frequency bandwidth of the controller
can be controlled via the control signal gain γ , and
the feedback signal gain λ values. The effective fre-
quency bandwidth of the controller may shrink or
widen as γ and λ decreases or increases, respec-
tively, as shown in Figs. 3 and 4.

4 Decreasing the controller damping coefficient μ2,
increasing the controller efficiency for vibration

suppression. The best performance is obtained
when μ2 = 0.0 as reported in Ref. [21].

5 In order that the controller is operating in the best
condition σ1 ≈ σ2, it is possible to measure the vari-
ation in the excitation frequency Ω ; then the con-
troller natural frequency ω2 is modified adaptively
to the same new value of the excitation frequency.

10 Comparison with previously published work

In comparison with previous work [1], the authors
studied numerically and experimentally four types of
controllers that applied to nonlinear beam model. The
result for a single beam system shows that PPF con-
troller and nonlinear saturation controller (NSC) are
the most effective ones for the assumed conditions of
the considered system but an analytical study for the
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Fig. 24 (a, b) Time responses of the main system and the controller, respectively; (c, d) Poincaré maps of the main system and the
controller, respectively; for σ1 = 0.5, σ2 = 0.0,ω3 = 3.0, f = 0.5

NSC system only has been presented. Positive posi-
tion feedback (PPF) controller applied for a flexible
manipulator is presented by Shan et al. [2]. The au-
thors considered several vibration modes in the con-
trol strategy for a linear mathematical model of the
system. The PPF was compared with the algorithm of
velocity feedback. Experimental investigation showed
that only the PPF algorithm is able to work properly
while the slewing process is realized. In Ref. [3], two
control algorithms, the state feedback pole assignment
and the positive position feedback, were implemented
to control the first-order mode of the system vibration
actively. The experimental results showed that the pos-
itive position feedback is the better both in the control
speed and in the attenuation amplitude than the state
feedback pole assignment.

In this paper, an analytical study for positive po-
sition feedback controller that coupled to a nonlinear
system was presented. The effect of all controller pa-

rameters was investigated. The steady-state solutions
and its stability were presented. We found that, for the
effective PPF controller, it is necessary tuning the con-
troller natural frequency to the external excitation fre-
quency (Ω = ω2) as shown in Fig. 7. In the case of
(Ω = ω2) the relation between the modal amplitudes
a1, a2 and the excitation force f is linear for a wide
range of the excitation force.

We found that all predictions from analytical solu-
tions are in good agreement with the numerical simu-
lation.

Appendix

r11 = −μ1ω1

r12 = 1

2ω1
f cos(ϕ10)
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Fig. 25 Time responses for
σ1 = σ2 = 0.0,ω1 = 3.0, f = 3.0
of: (a) the main system,
(b) the controller
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Fig. 26 Time responses for
σ1 = 0.25, σ2 = 0.0,
ω1 = 3.0, f = 0.5 of:
(a) the main system, and
(b) controller
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